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Assessing the efficiency of changes in land use for 
mitigating climate change
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Land-use changes are critical for climate policy because native 
vegetation and soils store abundant carbon and their losses from 
agricultural expansion, together with emissions from agricultural 
production, contribute about 20 to 25 per cent of greenhouse 
gas emissions1,2. Most climate strategies require maintaining or 
increasing land-based carbon3 while meeting food demands, which 
are expected to grow by more than 50 per cent by 20501,2,4. A finite 
global land area implies that fulfilling these strategies requires 
increasing global land-use efficiency of both storing carbon and 
producing food. Yet measuring the efficiency of land-use changes 
from the perspective of greenhouse gas emissions is challenging, 
particularly when land outputs change, for example, from one food 
to another or from food to carbon storage in forests. Intuitively, 
if a hectare of land produces maize well and forest poorly, maize 
should be the more efficient use of land, and vice versa. However, 
quantifying this difference and the yields at which the balance 
changes requires a common metric that factors in different outputs, 
emissions from different agricultural inputs (such as fertilizer) and 
the different productive potentials of land due to physical factors 
such as rainfall or soils. Here we propose a carbon benefits index 
that measures how changes in the output types, output quantities 
and production processes of a hectare of land contribute to the 
global capacity to store carbon and to reduce total greenhouse 
gas emissions. This index does not evaluate biodiversity or other 
ecosystem values, which must be analysed separately. We apply 
the index to a range of land-use and consumption choices relevant 
to climate policy, such as reforesting pastures, biofuel production 
and diet changes. We find that these choices can have much 
greater implications for the climate than previously understood 
because standard methods for evaluating the effects of land use4–11  
on greenhouse gas emissions systematically underestimate the 
opportunity of land to store carbon if it is not used for agriculture.

We define a more ‘carbon efficient’ use of land as one that increases 
the capacity of global land to store carbon and reduce greenhouse gas 
emissions (GHGs) overall, while meeting the same global food demand. 
For example, producing more crops, meat or milk on one hectare of 
land increases this carbon efficiency by increasing the global capacity 
to spare forests and other habitats while producing the same quantity 
of food. Gains in efficiency increase capacity to generate valuable out-
puts but do not by themselves guarantee how the added capacity will 
be used—for example, for more carbon or more food—or how other 
people might react owing to market forces. Yet because land supply is 
fixed, only increasing its efficiency can allow the world to meet both 
climate and food goals.

Governments, companies and individuals are making land-use 
decisions at least partially directed at reducing GHGs. Questions 
include whether to encourage conversion of cropland to forest or bio-
energy, what targets to set for national emissions from land use and 
how to reduce the carbon footprint of diets or food supply chains. Yet 
standard evaluation methods, as discussed below and in more detail 

in Supplementary Information, do not properly reflect the land’s oppor-
tunity to store carbon if it is not used for agriculture, which we call its 
carbon storage opportunity cost. They can therefore encourage ineffi-
cient results that reduce the global capacity to store carbon.

For example, typical lifecycle assessments (LCAs), which estimate the 
GHG costs of a food’s consumption, only estimate land-use demands 
in hectares without translating them into carbon costs4,5. Other LCAs 
consider land-use carbon costs only if a food is directly produced by 
clearing new land6,7, or only for specific crops, meat or milk, where 
both that food and agricultural land overall are expanding8–10. Such 
approaches assign no land-use carbon costs to most of the world’s food 
production because previously converted agricultural lands have no 
carbon storage opportunity cost12 (Supplementary Information).

Physical optimization models13,14 can estimate where agricultural 
expansion should occur to minimize carbon costs, by assuming likely 
crop yields of every hectare in a study area. Such models can count 
carbon storage opportunity costs, but they cannot account for the  
variability in carbon storage or crop yields in real hectares or estimate 
the effects of changes in their yields, output types or production methods  
(Supplementary Information).

Economic models provide a common approach to estimating how 
conversion of cropland to biofuels or forest affects carbon stored else-
where, called ‘leakage’ or ‘indirect land-use change’ (ILUC). However, 
these models do not calculate the true efficiency of the changes to the 
hectare analysed (for example, reforesting cropland) because the mod-
els also factor in how resulting increases in food prices cause changes 
on other land, by other people and at others’ expense. Such changes 
may include lower GHGs through reductions in global food consump-
tion and, although disputed, through simulated increases in the yields 
(efficiencies) of other farmland15. Such estimated ‘benefits’, paid for by 
global consumers, result from the decline in food production on the 
hectare whose use was deliberately changed, not from its gain in forest 
or bioenergy, and would therefore occur even if that hectare became 
supremely inefficient by producing nothing at all.

To appreciate the distinction, we imagine a possible economic anal-
ysis of a strange climate policy banning all cars except petrol-guzzling, 
expensive, luxury SUVs (sport utility vehicles). The efficiency of driv-
ing would decline, increasing emissions per kilometre. However, if the 
cost of driving rose high enough, an economic model might estimate 
overall GHG savings by forcing many people to stay at home and others  
to switch to public transit. Even if these outcomes were real, these 
switches would not make SUVs more efficient than economy cars.

The actual efficiency of driving matters because governments can reduce 
GHGs more generally by using fuel taxes and transit subsidies to encour-
age less travel and higher use of mass transit while also requiring vehicles 
that are more fuel-efficient. Similarly, if governments wished to use higher 
prices to reduce food consumption and spur yield gains, they could reduce 
GHGs more using taxes and subsidies while encouraging only efficient 
land-use changes (LUCs). To implement such policies, however, govern-
ments need to know which LUCs are more efficient in themselves.
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Our carbon benefits index provides such a measure, expressing  
benefits as kilograms of CO2 equivalent (CO2e) emissions per hectare 
(ha; 1 ha = 104 m2) per year. The index first incorporates the outputs of 
a hectare that are directly quantifiable in carbon terms. These include 
any changes in carbon storage on site, as well as net reductions in GHGs 
from displacing fossil fuels with bioenergy.

The challenge arises in calculating the carbon benefits of producing 
foods, whose carbon is consumed. The index values them according to 
the emissions that are avoided from their production elsewhere. The 
core assumption is that if one hectare did not produce a food, it would 
be produced elsewhere at its global-average carbon costs. By holding 
consumption and other production systems fixed, the index calculates 
only changes in the efficiency of the hectare analysed.

We call the land cost of replacing each food its ‘carbon opportunity 
cost’ (COC), and calculate it using two methods. In the first method, the  
‘carbon loss’ method, the COC is equal to the global carbon loss 
from plants and soils generated by producing each crop to date (the 
numerator), divided by the global production (the denominator), and 
is expressed as kilograms of CO2e per kilogram of crop. For each meat 
or milk, the COC is equal to the sum of COCs of the feeds needed 
to produce it (including lost carbon on pasture for ruminants). The 
COCs of bioenergy feed by-products equal the COCs of the crops 
that they displace.

The second method is the ‘carbon gain’ method, in which we estimate 
the quantity of carbon that could be sequestered annually if the average 
productive capacity of land used to produce a kilogram of each food 
globally were instead devoted to regenerating forest. The carbon loss 
method is generally more appropriate in a world of expanding crop-
land, but the carbon gain method could apply where increasing yields 
could only increase carbon by rebuilding forests.

Because carbon losses of native vegetation occur quickly yet food 
production could continue indefinitely, we calculate a present dis-
count value of both the numerator and denominator. The choice of 
rate to discount the costs and benefits of changes in the future is a 
question of climate policy. We use 4% in our central scenario, in part 
to match the implicit approach of US biofuel policies (Supplementary 
Information)15.

Table 1 presents COCs calculated with the carbon loss method for 
a sample of products using fresh weights, with a fuller list of 64 prod-
ucts in Extended Data Tables 1, 2 (including COCs using dry matter). 
COCs from the carbon gain method are mostly similar using a 4% 
discount rate and do not alter the directional results of our examples 
(Supplementary Tables 5–9). The COCs reflect the different aver-
age yields and native carbon stocks of lands used by different crops. 
For example, soybean COCs are 2.8 times larger than maize COCs 

because soybean yields are lower, even though the crops use similar 
lands. However, wheat and maize COCs are similar despite 40% lower 
wheat yields because wheat is grown overall on land with lower native 
carbon stocks.

Our core replacement assumption implies that if the rate of a food’s 
recurring production emissions (PEMs) on one hectare is lower or 
higher than the global average, the difference decreases or increases 
global PEMs. When calculating global-average PEMs for all foods 
(Extended Data Tables 1, 2), we factor that difference into the index. 
The index can therefore calculate the net GHG effects of altering yields 
by changing fertilizer or livestock feeds, which alter N2O and CH4 
emissions.

In summary, the total carbon benefits of a hectare of land is equal to 
the sum of: (1) the opportunity that its food production provides to 
store carbon elsewhere (COC × yield), (2) its savings or increase in 
global PEMs, (3) its annual change in soil and plant carbon storage 
and (4) any net savings in fossil emissions due to bioenergy generated 
(see equation (1) in Methods). The efficiency of an LUC depends on 
the gain or loss in carbon benefits.

The index can also evaluate the carbon efficiency of consumption by 
assuming that production systems are fixed. One individual’s change in 
consumption therefore alters global consumption and aggregate pro-
duction by that amount. The cost of a food is equal to its COC plus its 
PEMs (see equation (2) in Methods).

The index separates the efficiency of consumption from the effi-
ciency of each hectare’s production into different analyses. The higher 
a product’s COC, the costlier its consumption, but also the more bene-
ficial its production. For example, consuming a kilogram of beef costs 
more carbon than consuming a kilogram of soybeans, but producing 
a kilogram of beef generates more benefits because it frees up more 
carbon storage capacity elsewhere, assuming fixed demand.

We supply a Carbon Benefits Calculator (provided as Supplementary 
Data) for users to evaluate the efficiency of changes in real hectares 
using site-specific information and changes to discount rates, COCs 
and other parameters. We also apply our index to production and con-
sumption choices that are important to global climate policy in the 
following examples (see Supplementary Information for full sources 
of information used in the examples).

First, we consider production changes from Brazil grazing  
land. In Brazil, because of low yields of beef from extensive cattle  
grazing, proposals exist either to convert pastures to cropland for  
soybeans or to sugarcane for ethanol, or to intensify pasture manage-
ment to help meet the expected increases of about 80% in global beef  
demand by 20501,16. We consider which changes would produce more  
carbon benefits. Cardoso et al.17 categorized beef production in the 

Table 1 | COCs and global PEMs of major crop and livestock products

COCa (kg CO2 per kg 
fresh weight)

PEMs (kg CO2e per kg 
fresh weight)

Total (kg CO2e per kg 
fresh weight)

Total (g CO2e per kcalc) Total (kg CO2e per kg 
protein)

Maize 2.1 0.46 2.6 0.82 29

Rice (rough) 2.6 2.17 4.8 2.0 69

Wheat 1.9 0.69 2.6 0.9 23

Cassava 1.7 0.04 1.7 1.6 160

Potato 0.6 0.09 0.7 1.1 38

Soybeans 5.9 0.26 6.1 1.5 17

Pulses 10.5 0.55 11 3.1 47

Vegetable oils 9.7 1.3 11 1.2 Not applicable

Beefb 144 44 188 102 1,250

Cow milk 6.2 2.3 8.4 13.1 260

Pork 14 5.5 20 9.4 150

Poultry meat 11 3.7 14 8.4 110

Values are calculated using the carbon loss method and 4% time discounting.
aIncludes peatland emissions.
bAverage, including meat from dairy animals.
c1 kcal = 4,184 J.
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Cerrado region in Brazil into five systems with increasing beef yields 
from 30 kg ha−1 yr−1 to 220 kg ha−1 yr−1 on the basis of grazing prac-
tices, healthcare, fertilization and replanting frequency, and uses of leg-
umes or crop supplements. We find that for grazing land using system 1 
(30 kg ha−1 yr−1, carcass weight) shifting to sugarcane ethanol increases 
carbon benefits (Fig. 1). However, the more commonly used system 2  
(75 kg ha−1 yr−1) generates roughly the same benefits as sugarcane 
ethanol, whereas system 3 (150 kg ha−1 yr−1) produces much greater 
carbon benefits17. Shifting to soybean production at average Brazilian 
yields would produce more benefits than grazing system 2, but less 
than system 3.

By contrast, reforesting pastures at 5 t C ha−1 yr−1 would increase 
carbon benefits by a factor of five in the Atlantic Coastal Rainforest 
region. Grazing system 1 is mostly used in this region at present and 
pastures are difficult to intensify because they are mainly located on 
steep terrain.

Factoring in the land’s COCs, we find that shifting from system 1 to 
system 3 increases benefits six times, in contrast to the merely twofold 
gain16 from PEMs only. Shifting from grazing system 2 to system 3 
provides annual benefits equivalent to those of temperate forest growth 
(about 3 t C ha−1 yr−1)18,19. Extensive systems that use arid, native 
grasslands, including nomadic systems, can still be efficient despite 
producing little beef and few carbon benefits because they also sacri-
fice little opportunity to store carbon (Supplementary Information).

Second, we consider production changes related to intensification. 
By examining several plausible examples, we find that increasing crop 
inputs usually saves more GHGs through reduced land demands than 
the increase in GHGs because of higher PEMs. Examples include add-
ing 75 kg ha−1 yr−1 of nitrogen to maize in West Africa using flooded, 
irrigated rice, rather than upland rice, despite its higher methane emis-
sion, and comparing conventional versus organic bean production in 
Sweden (Extended Data Fig. 1).

Third, we consider production changes related to biofuel production. 
Carbon benefits from cropland with a rotation of maize and soybeans 

at average Iowa yields (22 t CO2e ha−1 yr−1) greatly exceed those of 
ethanol production either from maize (9 t CO2e ha−1 yr−1) or from 
perennial grasses (17.5 t CO2e ha−1 yr−1) (assuming optimistic grass 
dry-matter yields20 of 17 t ha−1 yr−1 and 0.6 t C ha−1 yr−1 soil car-
bon sequestration21; Extended Data Fig. 2). For maize ethanol, feed 
by-products provide two-thirds of the benefits. Perennial grasses for 
ethanol would have to achieve implausibly high dry-matter yields of 
32 t ha−1 yr−1 to match the benefits of maize–soybean rotations.

Fourth, we consider consumption changes related to biofuels. We 
estimate that the total GHG costs of consuming biofuels, rather than 
gasoline or diesel, range from 35% more for sugarcane ethanol to 230% 
more for soybean biodiesel (Fig. 2). Using Central European solar 
power to run battery electric vehicles generates only 9% of the GHGs of 
sugarcane ethanol, mostly through battery production (Supplementary 
Information). Our biofuel COC estimates are equivalent to ILUC esti-
mates if crops diverted to biofuels (after deducting by-products) are 
fully replaced at the average global carbon loss per kilogram of crop. 
Our estimates range from 100 g MJ−1 to 300 g MJ−1 of CO2 emissions 
for biofuels from different feedstocks—higher than gasoline or diesel 
emissions, even without counting their PEMs (Extended Data Table 3). 
Our estimates are mostly 6–14 times higher than those of economic 
models commissioned by California and the European Commission 
(Supplementary Table 4).

Last, we consider consumption changes related to shifting diets. 
LCAs have long estimated GHG benefits from diet shifts away from 
ruminant products (box 8 in ref. 12), but typically assign little or no GHG 
costs to land requirements5,8,22. By applying the carbon benefits index, 
we find global-average GHG costs of dairy and beef about 3–4 times  
higher than previous estimates by the UN Food and Agriculture 
Organization8 (Supplementary Information), which only include 
land-use GHGs from each year’s agricultural expansion. We esti-
mate the total GHG costs of average Northern European diets22 at 
more than 9 t CO2 yr−1 per capita (Fig. 3). That is about 20 times the 

Reforestation of tropical
rainforest (5 t C ha–1 yr–1)

Sugarcane ethanol

Soybean

Beef, system 5
(220 kg ha–1 yr–1)

Beef, system 4
(200 kg ha–1 yr–1)

Beef, system 3
(140 kg ha–1 yr–1)

Beef, system 2
(75 kg ha–1 yr–1)

Beef, system 1
(30 kg ha–1 yr–1)

Carbon bene�ts (t CO2e ha–1 yr–1)

0 5 10 15 20 25 30 35 40 45

Carbon bene�t Net avoided production emissions

Net increase in production emissions Net GHG bene�t

Fig. 1 | Carbon benefits of different potential uses of Brazilian grazing 
land. Error bars reflect the range of literature estimates of vegetation and 
soil carbon stocks used in part to derive the COCs.
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COC Production emissions
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Fig. 2 | Carbon costs of different fuel sources (per kilometre driven) 
based on the carbon benefits index. Error bars reflect the range of 
literature estimates of vegetation and soil carbon stocks used in part to 
derive the COCs. BEV, battery electric vehicles.
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most-emitting diet estimate in Tilman and Clark4 and equivalent to 
GHGs typically assigned to each European’s consumption of all goods, 
including energy23. Shifting from beef and dairy would reduce those 
emissions by 70%. Although animal products offer health benefits for 
the food-insecure24, we estimate much larger climate benefits than 
others if the wealthy consume less beef and dairy.

As these examples illustrate, our analysis finds that consumption 
and LUCs can have many times larger implications for climate change 
than often calculated. By undercounting the carbon storage opportu-
nity costs of land, LCAs and economic models can greatly overvalue 
mere shifts in land uses—for example, shifting croplands or pasture 
to forest or bioenergy—and undervalue both increases in pasture or 
crop productivity and reductions in demand—such as shifts to diets 
low in beef and milk.

By using average global costs as a benchmark, our method evaluates 
the comparative carbon advantage of different land uses. Even between 
two inefficient land uses, the less inefficient one will generate more 
benefits. As yields and farming areas change, COCs must change.

Despite many estimation uncertainties (Supplementary Information),  
implications for policy appear to be insensitive to them. Varying COCs 
on the basis of native carbon estimates that are ±20% of our estimates 
for vegetation and ±30% for soils and changing discount rates to 2% 
and 6% (Supplementary Table 3) do not alter the directions of our 
examples (Supplementary Tables 5–9). Because of scientific uncer-
tainties, however, our index does not incorporate biophysical effects 
of LUC (for example, albedo), which could be substantial.

Our index assumes that food would be replaced at global-average, 
rather than marginal, costs. In the real world, marginal carbon costs 
could differ through price effects or because a food’s replacement land 
physically differs from the global average. (Our calculator does allow a 
user to select marginal COCs as a lower or higher percentage of average 
COCs.) We therefore suggest the following uses for our index.

First, our index can be used to evaluate shifts from agriculture to 
forest or bioenergy. Efforts to deliberately replace food production with 
forests or bioenergy for climate purposes could require sizable carbon 
benefits as one core criterion. Regardless of whether price effects alter 
consumption or the productivity of other farms, the world is unlikely to 
achieve the ultimate climate goals through LUCs that reduce the global 
capacity to store carbon. In addition, changing the production of one 
hectare of land to try to lower GHGs by reducing food consumption is 

probably inefficient and inequitable, as suggested by the SUV example. 
Other farmers would probably replace most of the production, and 
higher prices would typically depress consumption by the poor more 
than by the rich owing to the greater price-sensitivity of the former25. 
To reduce inefficient consumption, targeted taxes or other demand 
strategies could be more efficient and equitable.

Second, our index can be used in attributional LCAs to assign  
land-use carbon costs to consumption choices, as we show in our diet 
examples. Those LCAs also use average GHG costs of production, 
rather than some estimate of marginal costs, and similarly assume that 
one person’s change in consumption equally alters global consumption.

Third, our index can be used as a benchmark for evaluating pre-
dictive models. Accurately projecting marginal, rather than average, 
consequences of one hectare’s changes would still have value. Doing so 
requires economic models, but results greatly vary by model or assump-
tion3,11,26,27. Only a small number of the demand and supply elastici-
ties required by global models have been econometrically estimated. 
Missing critical estimates include almost all cross-price elasticities, 
almost all medium-to-long-term elasticities, and supply elasticities of 
different pasture systems, although pasture occupies two-thirds of all 
agricultural land (Supplementary Information). Our view is that global 
land sparing is powerful15, although often hidden, because gains in 
local yields can increase competitiveness and encourage local expan-
sion1. Although our index cannot by itself answer these questions, 
the COC provides a useful benchmark to evaluate model results. For 
example, California’s estimates of ILUC from maize ethanol28 are 
about 10% of the average global loss of carbon generated by produc-
ing the required maize (using California’s amortization period and 
after accounting for by-products). By providing this average cost, our 
index helps to evaluate a model’s justification for estimating greatly 
different marginal costs.

Last, where some conversion of natural vegetation to agriculture is 
inevitable, such as for oil palm in Southeast Asia29 or for staple foods 
in Africa14, our index could help to determine the most efficient lands 
and crops to choose. For policy reasons, however, we advise great cau-
tion in using the index to justify conversion of native vegetation based 
on claims of high food yields. Because climate strategies require quick 
elimination of emissions from LUCs, clearing land in one location does 
not provide a general solution, even if clearing elsewhere would be 
worse. Strategies to reduce LUCs require strong policies to discourage 
expansion, so farmers intensify instead. It may be tempting to exag-
gerate likely yields on lands proposed for conversion, and promises of 
intensive management cannot justify conversions if the same invest-
ment could generate equal yields on existing cropland. However, these 
kinds of conversion also have high potential to harm biodiversity and 
other ecosystem values, which our index does not measure and which 
must be evaluated separately.

Overall, the concept of ‘carbon benefits’ offers an alternative to the 
concept of ‘leakage’, which assumes that land benefits the climate only 
by sequestering carbon or producing biofuels. Our approach recognizes 
that all increases in efficiency generate climate benefits.

Online content
Any methods, additional references, Nature Research reporting summaries, source 
data, statements of data availability and associated accession codes are available at 
https://doi.org/10.1038/s41586-018-0757-z.
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METhOdS
Calculating COCs using the carbon loss method. Basic method for crops. The 
COC for each crop equals the aggregate, time-discounted carbon lost from native 
vegetation and soils on land used to produce the crop globally (the numerator) in 
kilograms, divided by the aggregate, time-discounted annual production for that 
crop in kilograms. The result is multiplied by 3.67 to be expressed as kilograms of 
CO2e per kilogram of crop.

To estimate native carbon stocks of both vegetation and soils of existing crop-
land (Extended Data Figs. 3, 4), we employ a combination of vegetation modelling 
and biome estimates. We use the Lund–Potsdam–Jena managed land (LPJmL) 
dynamic global vegetation model (DGVM)30,31 to estimate native carbon stock in 
each 0.5° × 0.5° grid cell, but we scale the LPJmL results in each pixel so the average 
biome values of our adjusted LPJmL results match those of average reference values 
for the biome from the literature32–36. After analysing estimates of native carbon 
stocks available from three other DGVMs and determining that many of their 
estimates were too implausible to use (as discussed extensively in Supplementary 
Information), we chose LPJmL because its average estimates at the biome level 
match literature estimates fairly well.

Although some previous efforts used average carbon stocks for entire biomes 
to estimate stocks for each crop13,37, these biomes are large and include lands with 
very different native carbon stocks and productivities used differently by different 
crops; so they cannot properly distinguish among crops. Our method uses empir-
ical measures to adjust our DGVM results at the biome level to match empirical 
estimates but preserves the higher spatial resolution of the DGVM, so that carbon 
stocks within a biome can reflect major physical differences, such as rainfall. This 
method also implicitly incorporates the effects of disturbance, for example, from 
fire and wind, because they are automatically incorporated into biome estimates.

To identify the locations of different crops, we use maps provided by the Spatial 
Production Allocation Model (SPAM) for 42 crops in the year 200538 and estimate 
carbon losses on all cropland used by each crop separately. The loss represents 
the difference between vegetative carbon in native vegetation (including both 
above- and below-ground parts) and the average carbon stock of the crop. For crop 
carbon stocks, we use data from ref. 39 for perennial crops. For annual crops we 
assume annual average carbon stocks of 25% of the peak values and a whole-plant  
multiplier of 2.5 from the carbon in harvested crops. For conversion to cropland, 
we also assume loss of 25% of soil carbon within the top metre of soils, consist-
ent both with several other global studies39,40 and with a range of new meta- 
analyses41–45. For global crop production, we use data from the FAOSTAT data-
base46. For products that are only a portion of crops, such as vegetable oils, we 
apportion crop output based on energy content.
Time discounting. Conversion of land from forest to cropland loses carbon relatively 
quickly whereas the benefits of crop production for food or bioenergy extend over 
time. To reflect the values of earlier emissions reductions, we apply a discount 
rate both to the stream of carbon losses in the numerator of the COC and to the 
stream of production in the denominator. For vegetation losses in the numerator, 
we estimate the annual stream of losses using exponential decay functions from 
ref. 47, which vary by type of vegetation and climatic regions. For soil carbon losses 
we consider these rates47 to be too fast, and instead follow the exponential carbon 
response function from ref. 48. For the conversion of forests to cropland, it implies 
the loss of 98% of the volatile soil organic carbon (SOC) stock (25% of the SOC 
in the upper 1 m of the soil) within 20 years and is therefore consistent with the 
default period of the Intergovernmental Panel on Climate Change (IPCC). We 
apply similar discounting to the stream of crop production in the denominator.

In our base case, we use a 4% discount rate over 100 years for reasons that we 
explore more thoroughly in Supplementary Information. The choice of discount rate 
should be solely a question of climate policy for valuing mitigation over time, reflect-
ing, among other matters, the cost of short-term as well as long-term damages, risks 
of crossing thresholds, and the time value of money. In general, a 4% discount rate 
is consistent with a 4% real return on investment49 and a constant cost of a tonne of 
emissions over time. It also produces results roughly equivalent to the implicit treat-
ment of time discounting by USA federal and California biofuel policies, which use a 
30-year amortization period for carbon lost from land conversion owing to biofuels.
Calculating carbon loss from organic soils. Because the LPJmL model does not 
include detailed representations of peatland development and distribution, 
we use a global map of peatland regions50 to estimate emissions from organic 
soils under croplands. We determine shares of peatland soils for all SPAM crop 
distribution maps38 and apply emission factors from ref. 51 (using a rate of 
15 t C ha−1 yr−1 for oil palm). We also assume 8 Mha of drained peatland for 
pasture52 and emission rates equal to half of cropland emission rates because of 
lower need for drainage.
Calculating COCs using the carbon gain method. To calculate COCs with the carbon 
gain method, we assume that if increasing yields result in a reduction in agricultural 
land, the productive potential of the land no longer used for crops can be restored 
to forest. We base this productive potential on the net primary productivity of the 

native vegetation (NPPnat) of global hectares devoted to each crop, expressed in 
tonnes of carbon per hectare per year (t C ha−1 yr−1). Although land management 
can increase or decrease this productive potential, this native productivity (which 
reflects rainfall, solar radiation, temperature and soil type, among other factors) 
provides a reasonable measure of inherent productive potential. We use LPJmL 
to estimate and map NPPnat (Extended Data Fig. 5) and then use the SPAM 2005 
v3.2 cropland maps to estimate the average NPPnat of the land used for each type 
of crop. This average NPPnat per hectare, divided by the average yield of that crop, 
generates the amount of NPPnat used to produce a tonne of each crop, which can 
be converted to kilograms CO2 per kilogram of crop.

To determine how much potential carbon sequestration would be generated 
on average by devoting one tonne of NPPnat to reforestation, we need to deter-
mine both the NPPnat of forests that have become cropland and the average carbon 
sequestration rate on croplands modified to regenerate forest. We estimate the aver-
age NPPnat of all tropical croplands that were originally forest to be 9.7 t C ha−1 yr−1. 
We then use the mean of three recent meta-analyses of carbon fluxes in forests 
to estimate average carbon sequestration in regenerating tropical forests18,19,53,54 
over 100 years at 4.1 t C ha−1 yr−1 in vegetation and soils. Dividing the output 
(4.1 t C ha−1 yr−1) by NPPnat produces a ratio of 0.42 t C ha−1 yr−1 for every tonne 
of NPPnat available, which equals 1.5 kg CO2 (kg CO2 NPPnat) −1 for the tropics.

Extending our analysis to originally forested croplands in both the tropics and 
the temperate zone, we estimate the NPPnat at 8.5 t C ha−1 yr−1 from LPJmL, 
and the average annual carbon sequestration rate for regrowing forests18,19,54 is 
3.6 t C ha−1 yr−1. Although both figures are lower than those obtained for the 
tropics alone, they generate the same ratio of 0.42 t C ha−1 yr−1 sequestration for 
every tonne of NPPnat available. As the vast majority of the world’s croplands are 
located in temperate to tropical regions55, we use this benchmark.

For each crop, the COC calculated using this method equals that crop’s ratio 
of NPPnat to crop output in kilogram of CO2 per kilogram of crop, multiplied 
by this 1.5 kg CO2 (kg CO2 NPPnat)−1, which generates kilograms of CO2 per 
kilogram of crop.
Calculating COCs of livestock products. The global-average COC of livestock pro-
ducts (meat, dairy and eggs) equals the global-average COC of feeds, including 
portions of crops, such as oilseed meals, used to produce them. We estimate the 
global-average feed use per unit of livestock output based on the few publications 
available on global feed use56–58. We calibrated these data against FAOSTAT data 
on forage production and FAOSTAT feed use data for cereals, tubers, oil crops, 
pulses, brans, molasses and oil meals, so our total global feed use equals that in the 
FAOSTAT data. We treated fibrous, low-value by-products, such as crop residues 
and straw, as land-free sources of feed (that is, they have no COC), which applies 
to roughly 20% of global feed use in dry matter56.

Because ruminants heavily rely on grasses, we estimate the COC of permanent 
grazing land and apportion this COC to the forage from permanent grasslands 
for beef, bovine milk, and mutton based on global estimates of their relative con-
sumption of grasses58,59.

To estimate carbon losses on pasture, we use the HYDE 3.2 land-use map60, 
which estimates 2.8 billion hectares of grazing land. We overlay pastures with 
our estimate of native vegetation carbon stocks described above. Changes in SOC 
following the conversion of forests or grasslands into pastures remain disputed. 
Because effects in the tropics vary from negative to positive depending on grazing 
practices42,61,62, we assume no change in soil carbon for tropical pastures. Relying 
on a recent meta-analysis for temperature pastures, we assume a 10% loss of carbon 
in temperate pastures63.

For grazing lands that were naturally grassland (tree canopy cover less than 
10%), we also assume no loss of vegetative carbon. For grazing lands that were 
naturally forested (more than 60% tree cover), we estimate a loss of all tree carbon 
and replacement by grass carbon assuming that such areas must be cleared to show 
up as grasslands in land cover classifications from satellite data. For grazing lands 
that were naturally some kind of woody savanna, we assume 75% loss of vegetation 
carbon for woody savannas (30%–60% canopy cover) and 50% loss of vegetation 
carbon for savannas (10%–30% canopy cover), also based on assumptions about 
satellite data. On average for all grassland, these assumptions imply a 92% loss 
of vegetation carbon. Because this carbon loss is dominated by the loss of dense 
forests, assumptions for carbon losses on native grasslands and woody savannas 
have little consequence (see Supplementary Table 2).
Calculating COCs using the carbon gain method. For the carbon gain method, 
we estimate the NPPnat of grazing lands using LPJmL. Because grazing lands main-
tain native vegetation carbon stocks to a varying degree, we assign some NPPnat to 
the maintenance of these carbon stocks using complementary numbers to those for 
vegetation carbon loss (see previous paragraph). Hence, for natural grasslands we 
assume 100% for forests, 25% for woody savannas, 50% for less-woody savannas 
and 0% for grasslands that were originally forests.

We follow the same approach to time-discounting COCs for livestock and pas-
ture feeds as described above for crops.

© 2018 Springer Nature Limited. All rights reserved.
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Estimating PEMs for crops and crop products. We estimate the global-average 
PEMs for each crop for which we derived COCs based on sources (listed below) 
that ultimately rely on the IPCC Tier 1 or Tier 2 methods. These emissions were 
built into a global agriculture emissions accounting model (GlobAgri-WRR; devel-
oped by CIRAD, the World Resources Institute, Princeton University and INRA 
(Institut National de la Recherche Agronomique) for the World Resources Report 
of the World Resources Institute12) that uses the same methodology for agricultural 
product balances and similar livestock data as those used in studies by CIRAD and 
INRA64,65. Although this model contains many other features, for the purposes of 
this study, the model essentially provides a spreadsheet that adds up the emissions 
in the production process for crops in each region where they are produced and 
divides them by the total production. Sources of emissions are as follows.
Emissions from nitrogen use. Nitrogen balance, harvested nitrogen, nitrogen fix-
ation and use of fixed nitrogen, in addition to legumes needs of following crops, 
are based on data used in the analysis of ref. 59, with manure nitrogen rescaled 
using data from ref. 58. Emissions from nitrogen in the form of nitrous oxide are 
based on IPCC Tier 1 emission factors for direct and indirect emissions. Emissions 
from the manufacture and transport of nitrogen are based on analysis by the US 
Environmental Protection Agency (EPA)66. To compute N2O nitrogen residue 
emissions, we apply a factor of N2O emissions per harvested nitrogen, obtained 
by dividing the FAOSTAT total residue N2O emission by the total harvested nitro-
gen for each country.
Rice methane. Rice methane emissions rates are based on a spreadsheet model67, 
adjusted to match expert opinions of mid-season drainage or multiple drainages68.
Emissions from potash and phosphorus consumption. Quantities of potash and phos-
phorus used per crop are based on estimates for 2003 and 2007 data originally 
compiled by the International Fertilizer Institute and completed by FertiStat69. We 
use methods described in Supplementary Information to estimate application rates 
for crops not represented in the initial data. Country-level fertilizer consumption 
from FAOSTAT is then used to rescale over time the rates per crop per unit area. 
Emissions are based on estimates of those associated with phosphate and potash 
extraction in the analysis of EPA66.
Pesticides emissions. Pesticide quantities are taken from FAOSTAT and emissions 
per kilogram of active ingredients in pesticides are based on the analysis of EPA66.
Direct on-farm energy use. Emissions for energy used directly on farms are taken 
from FAOSTAT46. To allocate emissions to individual crops, we first deduct a global 
number for livestock PEMs based on previous estimates8 and on the hypothesis 
of a constant coefficient for emissions per energy content of livestock product. 
Then we allocate the remainder to crops using professional judgment supported 
by different lifecycle calculations.

We use 100-year global warming potentials of 298 for N2O and 34 for CH4 based 
on recommendations in the latest assessment report by the IPCC70.
Estimating PEMs for livestock products. Although GlobAgri-WRR estimates 
livestock PEMs that rely heavily on ref. 58, we do not use GlobAgri-WRR for 
this purpose, in part because it uses the ruminant model to estimate methane  
emissions from enteric fermentation, which is not easily accessible by others  
for use in estimating methane emissions for individual farms. We therefore  
use IPCC Tier 2 methods to estimate methane from enteric fermentation based 
on the feed use estimates obtained in this study. Non-enteric livestock emission 
sources are estimated on the basis of GLEAM model results8,71,72. To be consistent 
with our crop production estimates, PEMs for feed (which contribute to livestock 
PEMs) are based on GlobAgri-WRR, as described above. For emissions of nitrous 
oxide from pasture, we use estimates of nitrogen applied to pasture generated 
from ref. 59.
Biofuel and biofuel by-product COCs and PEMs for estimating GHG costs 
of consumption. As in the case of livestock products, the global-average COC 
of biofuels equals the global-average COC of the feedstock (that is, crop prod-
ucts) used to produce them. Process yields and GHG emission data are based 
on ref. 73, except in the case of grass-based ethanol, where they are based on ref. 
74, which assumed conversion of biomass to ethanol of 375 litres per tonne of 
dry matter, which we use as well. In both studies73,74, the GHG savings due to 
electricity by-products from sugarcane or cellulosic ethanol production are 
allocated to the biofuel, which reduces its nominal PEMs. To account for the 
land and GHG-sparing value of feed co-products from maize and wheat eth-
anol (distillers’ dried grains with solubles, DDGS) we use the substitution 
method. We estimate the specific crops that the DDGS would replace based on  
ref. 75. We then apply the COC values of the crops substituted. (Despite uncertainty 
about DDGS uses, the analysis75 generally values DDGS for its protein value, which 
increases by-product values compared to use for calories.)
Equation for calculating carbon benefits of production. The carbon benefits 
(CB; in kg CO2e ha−1 yr−1) are calculated as
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COCs is the total COC (kg CO2e ha−1 yr−1), Y is a vector of yield(s) of agricul-
tural product(s) (including any biofuel feed by-products; kg product ha−1 yr−1)  
and COC is a vector of the COC(s) of agricultural product(s) (kg CO2e per 
kg product). PEMbfits is the total benefits (or costs) from PEMs on the hectare 
(kg CO2e ha−1 yr−1), where PEMavg is a vector of the global-average PEMs for 
each agricultural product (kg CO2e per kg product) and PEMh is the PEMs on 
the hectare analysed (kg CO2e per kg product). This equation applies to all crop 
and animal outputs other than biofuels and includes biofuel by-products used 
for feed or food, whose value is based on the crop products that they substitute. 
CARBSTch is the time-discounted benefit from the annual change in carbon storage 
in vegetation and soils (kg CO2e ha−1 yr−1) where PVDcs-ch is the present dis-
counted value of the expected change in carbon storage (kg CO2e) and PDVha-yr1→100  
is the present discounted value of each hectare, each year, over 100 years (ha yr). 
(Discounting the stream of hectare years is equivalent for carbon-stock changes 
to discounting the stream of crop production in the denominator of the COC.) 
FOSsav is the total fossil fuel savings (net; kg CO2e ha−1 yr−1), where BIOFY is a 
vector of biofuel yield(s) (MJ ha−1 yr−1), FOSEF is a vector of fossil fuel emission 
factor(s) (production and combustion, but not LUC; kg CO2e MJ−1) and BIOFEF 
is a vector of biofuel PEMs factor(s) (production only, not combustion or LUC; 
kg CO2e MJ−1). BIOFEF is partially a function of the agricultural practices on a 
particular parcel of land and partially a function of the emissions involved down-
stream in the conversion and transportation processes. When evaluating biofu-
els, the PEM applied to the biofuel by-product should allocate total farm PEMs 
between that by-product and the biofuel.
Equation for calculating carbon costs of consumption. The carbon cost of con-
sumption (CCC; kg CO2e) is

= ⋅ +CONSUM COC PEMCCC ( ) (2)

where CONSUM is the consumption of a product(s) in kilograms, and the 
COC and PEM of each product is expressed in kilograms CO2e per kilogram 
product.
Sensitivity calculations. We perform sensitivity analysis for COCs by varying 
soil and vegetation carbon estimates across all areas. We used an uncertainty of 
±30% for soil carbon, based on a review of differential soil carbon estimates76, 
and ±20% for vegetative carbon, based on our assumption that their uncertainties 
are substantially lower. We generate high and low COCs based on this range and 
on alternative discount rates of 2% and 6% (Supplementary Table 3). We show 
the effects of these assumptions on all examples analysed here in Supplementary 
Tables 5–9. The results show no directional changes in land-use comparisons, 
except for a few uses that have very similar carbon benefits or carbon costs in our 
central scenario and that can shift modestly from one side to another.
Uncertainties and certain data advantages of our approach. Our approach  
has one inherent technical advantage over modelling approaches that attempt  
to estimate likely carbon losses from land conversion by estimating the precise 
locations where land conversion will occur. To estimate where conversion will 
occur and the resulting carbon losses, such approaches require overlapping mul-
tiple spatial datasets, each of which has its own random errors. Even maps of 
cropland versus other lands have large discrepancies and substantial errors77,78. 
Overlapping the maps will produce errors wherever any individual map has 
errors; for example, a correct yield estimate combined with an incorrect carbon 
estimate will generate an incorrect result. More problematically, many cells with 
such errors will probably stand out as most likely or beneficial for conversion 
because of such errors.

Because the carbon benefits index estimates carbon loss per kilogram of crop 
by averaging critical parameters across all cells devoted to each crop worldwide—
although opportunities for systematic errors remain—the method provides many 
opportunities to average out random errors. At the same time, although the COC 
is based on this global average, the user can use better site-specific information 
about the precise parcel undergoing change. Supplementary Information contains 
a fuller discussion of additional uncertainties.
Code availability. The carbon benefits index model, which shows the calcula-
tion of COCs and PEMs, is available for download from Pangea at https://doi.
org/10.1594/PANGAEA.893761. The LPJmL model code is available at https://
github.com/PIK-LPJmL/LPJmL. The Carbon Benefits Calculator, which facilitates 
calculation of carbon benefits using COCs and PEMs for specific parcels of land,  
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is included as Supplementary Data, and future revisions will be available at https://
www.princeton.edu/~tsearchi.

Data availability
LPJmL modelling results, in the form of global carbon and native net primary 
productivity maps, are available at https://doi.org/10.1594/PANGAEA.893761. 
The different datasets used to run LPJmL for this study are publicly available and 
described in Supplementary Information along with links. Any other materials 
generated for this study are available from the corresponding author on reasonable 
request.
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Extended Data Fig. 1 | Carbon benefits of different crop production 
systems based on the carbon benefits index. Error bars reflect the range 
of literature estimates of vegetation and soil carbon stocks.
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Extended Data Fig. 2 | Carbon benefits of different potential Iowa cropland uses based on the carbon benefits index. Error bars reflect the range of 
literature estimates of vegetation and soil carbon stocks.
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Extended Data Fig. 3 | Above- and below-ground carbon stocks of 
potential natural vegetation under current climate, used to derive 
COCs with the carbon loss method. Data simulated with the LPJmL 

model and adjusted at the biome level according to reference values from 
the literature (see Supplementary Information).
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Extended Data Fig. 4 | Soil carbon stocks of potential natural vegetation under current climate used to derive COCs with carbon loss method. Data 
simulated with LPJmL and adjusted at the biome level according to reference values from the literature (see Supplementary Information).
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Extended Data Fig. 5 | Annual net primary productivity of potential native vegetation under current climate used to derive COCs with carbon gain 
method. Data simulated with LPJmL.
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Extended data Table 1 | Global-average COCs, PEMS and GhGs for a selection of food, feed and fibre items, calculated using the carbon 
loss method and 4% time discounting

*Includes organic soil emissions.
†To convert to grams CO2e per megajoule, divide by 4.18.
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Extended data Table 2 | Global-average COCs, PEMS and GhGs for a selection of food, feed and fibre items, calculated using the carbon 
loss method and 4% time discounting (continued from Extended data Table 1)

*Includes organic soil emissions.
†To convert to grams CO2e per megajoule, divide by 4.18.
††Average, including meat from dairy animals (refers to whole-carcass weight, including bone and fatty tissue).
^Refers to whole-carcass weight, including bone and fatty tissue (see Methods for sources).
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Extended data Table 3 | Consumption GhG costs for a selection of biofuels

GE, gross energy; LHV, lower heating value. See Methods for sources.
*For COC data calculated with the carbon loss method.
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